Budarina, Natalia and Dickinson, Detta and Bernik, Vasili
(2010)
Simultaneous Diophantine approximation in the real, complex and p–adic fields.
Mathematical Proceedings of the Cambridge Philosophical Society, 149 (2).
pp. 193-216.
ISSN 1469-8064
Abstract
In this paper it is shown that if the volume sum ∑r = 1∞ Ψ(r) converges for a monotonic function Ψ then the set of points (x, z, w) ∈ ℝ × ℂ × ℚp which simultaneously satisfy the inequalities |P(x)| ≤ H−v1 Ψλ1(H), |P(z)| ≤ H−v2 Ψλ2(H) and |P(w)|p ≤ H−v3 Ψλ3(H) with v1 + 2v2 + v3 = n − 3 and λ1 + 2λ2 + λ3 = 1 for infinitely many integer polynomials P has measure zero.
Item Type: |
Article
|
Additional Information: |
Cite as: BUDARINA, N., DICKINSON, D., & BERNIK, V. (2010). Simultaneous Diophantine approximation in the real, complex and p–adic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 149(2), 193-216. doi:10.1017/S0305004110000162 |
Keywords: |
Simultaneous Diophantine approximation; real, complex and p–adic fields; |
Academic Unit: |
Faculty of Science and Engineering > Mathematics and Statistics |
Item ID: |
10110 |
Identification Number: |
https://doi.org/10.1017/S0305004110000162 |
Depositing User: |
Dr. Detta Dickinson
|
Date Deposited: |
16 Oct 2018 16:38 |
Journal or Publication Title: |
Mathematical Proceedings of the Cambridge Philosophical Society |
Publisher: |
Cambridge University Press |
Refereed: |
Yes |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads