Dolan, Brian P.
(1998)
Renormalisation group flow and geodesics in the O(N) model for large N.
Nuclear Physics B, 528 (3).
pp. 553-576.
ISSN 0550-3213
Abstract
A metric is introduced on the space of parameters (couplings) describing the large N limit of the O(N) model in Euclidean space. The geometry associated with this metric is analysed in the particular case of the infinite volume limit in three dimensions and it is shown that the Ricci curvature diverges at the ultra-violet (Gaussian) fixed point but is finite and tends to constant negative curvature at the infra-red (Wilson-Fisher) fixed point. The renormalisation group flow is examined in terms of geodesics of the metric. The critical line of cross-over from the Wilson-Fisher fixed point to the Gaussian fixed point is shown to be a geodesic but all other renormalisation group trajectories, which are repulsed from the Gaussian fixed point in the ultraviolet, are not geodesics. The geodesic flow is interpreted in terms of a maximisation principle for the relative entropy.
Item Type: |
Article
|
Keywords: |
Renormalisation group; Cross-over; Entropy; Spherical model; Geodesic; |
Academic Unit: |
Faculty of Science and Engineering > Mathematical Physics |
Item ID: |
10498 |
Identification Number: |
https://doi.org/10.1016/S0550-3213(98)00457-X |
Depositing User: |
IR Editor
|
Date Deposited: |
18 Feb 2019 14:46 |
Journal or Publication Title: |
Nuclear Physics B |
Publisher: |
Elsevier |
Refereed: |
Yes |
URI: |
|
Use Licence: |
This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available
here |
Repository Staff Only(login required)
|
Item control page |
Downloads per month over past year
Origin of downloads