Prevedello, Giulio and Duffy, Ken R.
(2020)
Discrete convolution statistic for hypothesis testing.
Communications in Statistics - Theory and Methods.
ISSN 1532-415X
Abstract
The question of testing for equality in distribution between two linear models, each consisting of sums of distinct discrete independent random variables with unequal numbers of observations, has emerged from the biological research. In this case, the computation of classical χ2 statistics, which would not include all observations, results in loss of power, especially when sample sizes are small. Here, as an alternative that uses all data, the maximum likelihood estimator for the distribution of sum of discrete and independent random variables, which we call the convolution statistic, is proposed and its limiting normal covariance matrix determined. To challenge null hypotheses about the distribution of this sum, the generalized Wald’s method is applied to define a testing statistic whose distribution is asymptotic to a χ2 with as many degrees of freedom as the rank of such covariance matrix. Rank analysis also reveals a connection with the roots of the probability generating functions associated to the addend variables of the linear models. A simulation study is performed to compare the convolution test with Pearson’s χ2, and to provide usage guidelines.
Repository Staff Only(login required)
 |
Item control page |
Downloads per month over past year