O'Grady, Paul D. and Pearlmutter, Barak A. (2008) Discovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint. Neurocomputing, 72 (1-3). pp. 88-101.
Download (487kB)
|
Abstract
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness constraint, where the resultant algorithm has multiplicative updates and utilises the beta divergence as its reconstruction objective. In combination with a spectral magnitude transform of speech, this method discovers auditory objects that resemble speech phones along with their associated sparse activation patterns. We use these in a supervised separation scheme for monophonic mixtures, finding improved separation performance in comparison to classic convolutive NMF.
Item Type: | Article |
---|---|
Keywords: | Non-negative matrix factorisation; Sparse representations; Convolutive; Hamilton Institute; dictionaries; Speech phone analysis; |
Academic Unit: | Faculty of Science and Engineering > Research Institutes > Hamilton Institute |
Item ID: | 1685 |
Depositing User: | Hamilton Editor |
Date Deposited: | 25 Nov 2009 12:50 |
Journal or Publication Title: | Neurocomputing |
Publisher: | Elsevier |
Refereed: | Yes |
URI: | |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only(login required)
Item control page |
Downloads
Downloads per month over past year