Murray, John (2007) Projective indecomposable modules, Scott modules and the Frobenius-Schur indicator. Journal of Alegbra, 311 (2). pp. 800-816. ISSN 0021-8693
Download (194kB)
|
Abstract
Let Φ be a principal indecomposable character of a finite group G in characteristic 2. The Frobenius-Schur indicator v(Φ) of Φ is shown to equal the rank of a bilinear form dened on the span of the involutions in G. Moreover, if the principal indecomposable module corresponding to Φ affords a quadratic geometry, then v(Φ) > 0. This result is used to prove a more precise form of a theorem of Benson and Carlson on the existence of Scott components in the endomorphism ring of an indecomposable G-module, in case the module affords a G-invariant symmetric form.
Item Type: | Article |
---|---|
Keywords: | Green correspondence; Quadratic form; Symmetric bilinear form; Frobenius–Schur indicator; Broué–Robinson form; Scott module. |
Academic Unit: | Faculty of Science and Engineering > Mathematics and Statistics |
Item ID: | 1788 |
Identification Number: | https://doi.org/10.1016/j.jalgebra.2006.12.009 |
Depositing User: | Dr. John Murray |
Date Deposited: | 30 Mar 2010 10:04 |
Journal or Publication Title: | Journal of Alegbra |
Publisher: | Elsevier - Academic Press |
Refereed: | No |
URI: | |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only(login required)
Item control page |
Downloads
Downloads per month over past year