MURAL - Maynooth University Research Archive Library

    Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    Ohlendieck, Kay (2011) Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skeletal Muscle, 1 (6). pp. 1-15.

    [img] Download (1MB)

    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...

    Add this article to your Mendeley library


    Background: Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results: Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions: This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

    Item Type: Article
    Additional Information: Research in the author’s laboratory was supported by grants from the Irish Health Research Board, the Irish Higher Education Authority, Muscular Dystrophy Ireland, Science Foundation Ireland and the European Commission. The author thanks all members of the NUIM Muscle Biology Laboratory and our many international collaborators for their help and encouragement over the past few years.
    Keywords: Skeletal muscle; muscle proteomics;
    Academic Unit: Faculty of Science and Engineering > Biology
    Item ID: 2457
    Identification Number:
    Depositing User: Prof. Kay Ohlendieck
    Date Deposited: 02 Mar 2011 17:32
    Journal or Publication Title: Skeletal Muscle
    Publisher: BioMed Central
    Refereed: Yes
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only(login required)

    View Item Item control page


    Downloads per month over past year

    Origin of downloads