MURAL - Maynooth University Research Archive Library



    Ubiquitous and Wearable Computing Solutions for Enhancing Motor Rehabilitation of the Upper Extremity Post-Stroke


    Coffey, Aodhan L. (2016) Ubiquitous and Wearable Computing Solutions for Enhancing Motor Rehabilitation of the Upper Extremity Post-Stroke. PhD thesis, National University of Ireland Maynooth.

    [img]
    Preview
    Download (63MB) | Preview


    Share your research

    Twitter Facebook LinkedIn GooglePlus Email more...



    Add this article to your Mendeley library


    Abstract

    A stroke is the loss of brain function caused by a sudden interruption in the blood supply of the brain. The extent of damage caused by a stroke is dependent on many factors such as the type of stroke, its location in the brain, the extent of oxygen deprivation and the criticality of the neural systems affected. While stroke is a non-cumulative disease, it is nevertheless a deadly pervasive disease and one of the leading causes of death and disability worldwide. Those fortunate enough to survive stroke are often left with some form of serious long-term disability. Weakness or paralysis on one side of the body, or in an individual limb is common after stroke. This affects independence and can greatly limit quality of life. Stroke rehabilitation represents the collective effort to heal the body following stroke and to return the survivor to as normal a life as possible. It is well established that rehabilitation therapy comprising task-specific, repetitive, prolonged movement training with learning is an effective method of provoking the necessary neuroplastic changes required which ultimately lead to the recovery of function after stroke. However, traditional means of delivering such treatments are labour intensive and constitute a significant burden for the therapist limiting their ability to treat multiple patients. This makes rehabilitation medicine a costly endeavour that may benefit from technological contributions. As such, stroke has severe social and economic implications, problems exasperated by its age related dependencies and the rapid ageing of our world. Consequently these factors are leading to a rise in the number living with stroke related complications. This is increasing the demand for post stroke rehabilitation services and places an overwhelming amount of additional stress on our already stretched healthcare systems. Therefore, new innovative solutions are urgently required to support the efforts of healthcare professionals in an attempt to alleviate this stress and to ultimately improve the quality of care for stroke survivors. Recent innovations in computer and communication technology have lead to a torrent of research into ubiquitous, pervasive and distributed technologies, which might be put to great use for rehabilitative purpose. Such technology has great potential utility to support the rehabilitation process through the delivery of complementary, relatively autonomous rehabilitation therapy, potentially in the comfort of the patient's own home. This thesis describes concerted work to improve the current state and future prospects of stroke rehabilitation, through investigations which explore the utility of wearable, ambient and ubiquitous computing solutions for the development of potentially transformative healthcare technology. Towards this goal, multiple different avenues of the rehabilitation process are explored, tackling the full chain of processes involved in motor recovery, from brain to extremities. Subsequently, a number of cost effective prototype devices for use in supporting the ongoing rehabilitation process were developed and tested with healthy subjects, a number of open problems were identified and highlighted, and tentative solutions for home-based rehabilitation were put forward. It is envisaged that the use of such technology will play a critical role in abating the current healthcare crisis and it is hoped that the ideas presented in this thesis will aid in the progression and development of cost effective, efficacious rehabilitation services, accessible and affordable to all in need.

    Item Type: Thesis (PhD)
    Keywords: Ubiquitous; Wearable; Computing Solutions; Enhancing; Motor Rehabilitation; Upper Extremity; Post-Stroke;
    Academic Unit: Faculty of Science and Engineering > Electronic Engineering
    Item ID: 7913
    Depositing User: IR eTheses
    Date Deposited: 14 Feb 2017 11:58
    URI:
      Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

      Repository Staff Only(login required)

      View Item Item control page

      Downloads

      Downloads per month over past year

      Origin of downloads