Solmaz, Selim and Mason, Oliver and Shorten, Robert N. (2006) General Inertia and Circle Criterion. Proceedings in Applied Mathematics and Mechanics, 6 (1). pp. 845-846.
This is the latest version of this item.
Download (112kB)
|
Abstract
In this paper we extend the well known Kalman-Yacubovic-Popov (KYP) lemma to the case of matrices with general regular inertia. We show that the version of the lemma that was derived for the case of pairs of stable matrices whose rank difference is one, extends to the more general case of matrices with regular inertia and in companion form. We then use this result to derive an easily verifiable spectral condition for a pair of matrices with the same regular inertia to have a common Lyapunov solution (CLS), extending a recent result on CLS existence for pairs of Hurwitz matrices that can be considered as a time-domain interpretation of the famous circle criterion.
Item Type: | Article |
---|---|
Keywords: | General Inertia, Matrices, Circle Criterion, Stability, Switching Systems |
Academic Unit: | Faculty of Science and Engineering > Research Institutes > Hamilton Institute Faculty of Science and Engineering > Mathematics and Statistics |
Item ID: | 883 |
Depositing User: | Selim Solmaz |
Date Deposited: | 29 Jan 2008 |
Journal or Publication Title: | Proceedings in Applied Mathematics and Mechanics |
Refereed: | Yes |
URI: | |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Available Versions of this Item
-
General Inertia and Circle Criterion. (deposited 30 Jan 2008)
- General Inertia and Circle Criterion. (deposited 29 Jan 2008) [Currently Displayed]
Repository Staff Only(login required)
Item control page |
Downloads
Downloads per month over past year