Jun, Sung Chan, Pearlmutter, Barak A. and Nolte, Guido (2002) Fast robust MEG source localization using MLPs. In: Proceedings of the 13th International Conference on Biomagnetism, August 10-14, 2002, Jena, Germany.
PDF
biomag-2002-localize.pdf
Download (70kB)
biomag-2002-localize.pdf
Download (70kB)
Official URL: http://biomag2002.uni-jena.de
Abstract
Source localization from MEG data in real time requires algorithms which are robust, fully automatic, and very fast. We present two neural network systems which are able to localize a single dipole to reasonable accuracy within a fraction of a millisecond, even when the signals are contaminated by considerable noise. The first network is a multilayer perceptron (MLP) which takes the sensor measurements as inputs, uses two hidden layers, and outputs source location in Cartesian coordinates. After training with random dipolar sources contaminated by real noise, localization of a single dipole could be performed within 300 microseconds on an 800 Mhz Athlon workstation, with an average localization error of 1.15 cm. To improve the accuracy to 0.28 cm, one can apply a few iterations of conventional Levenberg-Marquardt (LM) minimization using the MLP output as the initial guess. The combined method is about twenty times faster than ultistart LM localization with comparable accuracy. In a second network with only one hidden layer, the outputs were the amplitudes of 193 evenly distributed Gaussian functions holding a soft distributed representation of the dipole location. We trained this network on dipolar sources with real noise, and externally converted the network’s output into an explicit Cartesian coordinate representation of the dipole location. This new network had an improved localization accuracy of 0.87 cm, while localization time was lengthened to about 800 microseconds.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Keywords: | MLP; Multilayer perceptron; Cartesian-MLP;Soft-MLP structures. |
Academic Unit: | Faculty of Science and Engineering > Computer Science |
Item ID: | 1422 |
Depositing User: | Barak Pearlmutter |
Date Deposited: | 02 Jun 2009 15:39 |
Refereed: | Yes |
Related URLs: | |
URI: | https://mural.maynoothuniversity.ie/id/eprint/1422 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year