Ward, Tomas E. (2013) Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities. In: Towards Practical Brain-Computer Interfaces Bridging the Gap from Research to Real-World Applications. Biological and Medical Physics, Biomedical Engineering . Springer Berlin Heidelberg, pp. 17-40. ISBN 978-3-642-29745-8
PDF
TW_Hybrid_Optical.pdf
Download (806kB)
TW_Hybrid_Optical.pdf
Download (806kB)
Abstract
In this chapter we present an overview of the area of electroencephalographyfunctional
near infrared spectroscopy (EEG-fNIRS) measurement as an activity
monitoring technology for brain computer interfacing applications. Our interest in
this compound neural interfacing technology is motivated by a need for a motor
cortical conditioning technology suitable for use in a neurorehabilitation setting
[15, 50]. Specifically we seek BCI technology that allows a patient with a paretic
limb (as a consequence of stroke) to engage in movement-based rehabilitation
exercises which will, we hope, encourage neuroplastic processes in the brain so that
recovery and function is ultimately restored [38]. As we are interested in rehabilitation
following stroke haemodynamic signatures of motor cortical activity coupled
with the corresponding direct measures of the electrical activity of the neurons
involved could be a rich source of new information on the recovering brain areas.
While most neural engineers will be familiar with the concepts underpinning the
electroencephalogram (EEG), the same cannot be said for fNIRS. Consequently this
chapterwill discussmuch of the foundational concepts underlying this measurement
before describing an EEG-fNIRS probe and early experiments which illustrate the
concept and highlight aspects of the utility of this hybrid BCI approach.
Item Type: | Book Section |
---|---|
Keywords: | Hybrid Optical–Electrical Brain Computer Interfaces; |
Academic Unit: | Faculty of Science and Engineering > Electronic Engineering |
Item ID: | 3856 |
Depositing User: | Dr Tomas Ward |
Date Deposited: | 12 Sep 2012 10:04 |
Publisher: | Springer Berlin Heidelberg |
Refereed: | Yes |
URI: | https://mural.maynoothuniversity.ie/id/eprint/3856 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year