Moser, Philippe and Stephan, Frank (2015) Depth, Highness and DNR Degrees. In: FCT 2015 : 20th International Symposium on Fundamentals of Computation Theory, 17-19 August 2015, Gdansk, Poland.
Preview
PM-Depth.pdf
Download (250kB) | Preview
Abstract
A sequence is Bennett deep [5] if every recursive approximation of the
Kolmogorov complexity of its initial segments from above satisfies that the difference
between the approximation and the actual value of the Kolmogorov complexity of
the initial segments dominates every constant function. We study for different lower
bounds r of this difference between approximation and actual value of the initial segment
complexity, which properties the corresponding r(n)-deep sets have. We prove
that for r(n) = εn, depth coincides with highness on the Turing degrees. For smaller
choices of r, i.e., r is any recursive order function, we show that depth implies either
highness or diagonally-non-recursiveness (DNR). In particular, for left-r.e. sets, order
depth already implies highness. As a corollary, we obtain that weakly-useful sets are
either high or DNR. We prove that not all deep sets are high by constructing a low
order-deep set.
Bennett's depth is defined using prefix-free Kolmogorov complexity. We show that
if one replaces prefix-free by plain Kolmogorov complexity in Bennett's depth definition,
one obtains a notion which no longer satisfies the slow growth law (which
stipulates that no shallow set truth-table computes a deep set); however, under this
notion, random sets are not deep (at the unbounded recursive order magnitude). We
improve Bennett's result that recursive sets are shallow by proving all K-trivial sets
are shallow; our result is close to optimal.
For Bennett's depth, the magnitude of compression improvement has to be achieved
almost everywhere on the set. Bennett observed that relaxing to infinitely often is
meaningless because every recursive set is infinitely often deep. We propose an alternative
infinitely often depth notion that doesn't suffer this limitation (called i.o.
depth).We show that every hyperimmune degree contains a i.o. deep set of magnitude
εn, and construct a π01- class where every member is an i.o. deep set of magnitude
εn. We prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep
of constant magnitude, and that every nonrecursive many-one degree contains such
a set.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Keywords: | Depth; Highness; DNR Degrees; |
Academic Unit: | Faculty of Science and Engineering > Computer Science |
Item ID: | 6516 |
Depositing User: | Philippe Moser |
Date Deposited: | 03 Nov 2015 16:59 |
Refereed: | Yes |
URI: | https://mural.maynoothuniversity.ie/id/eprint/6516 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year