MURAL - Maynooth University Research Archive Library



    Multi-Code Multi-Rate Universal Maximum Likelihood Decoder using GRAND


    Riaz, Arslan, Bansa, Vaibhav, Solomon, Amit, An, Wei, Liu, Qijun, Galligan, Kevin, Duffy, Ken R., Medard, Muriel and Yazicigil, Rabia Tugce (2021) Multi-Code Multi-Rate Universal Maximum Likelihood Decoder using GRAND. ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). pp. 239-246. ISSN 78-1-6654-3751-6/21/

    [thumbnail of Multi-Code_Multi-Rate_Universal_Maximum_Likelihood_Decoder_using_GRAND.pdf]
    Preview
    Text
    Multi-Code_Multi-Rate_Universal_Maximum_Likelihood_Decoder_using_GRAND.pdf

    Download (5MB) | Preview

    Abstract

    We present the first fully-integrated universal Max- imum Likelihood decoder in 40 nm CMOS using the Guessing Random Additive Noise Decoding (GRAND) algorithm for low- power applications. The 0.83 mm2 multi-code multi-rate universal decoder can efficiently decode any code of length up to 128 bits with 1 μs latency at 68 MHz. Dynamic clock gating leveraging noise statistics reduces the average power dissipation to 3.75 mW at 1.1 V or 30.6 pJ/decoded bit with a throughput of 122.6 Mb/s. Universal decoding reduces hardware footprint, and the design allows seamless swapping between codebooks with no downtime, enabling use by multiple applications without switch-over.
    Item Type: Article
    Keywords: error correcting codes; maximum likelihood decoding; GRAND; hard-detection; universal decode;
    Academic Unit: Faculty of Science and Engineering > Research Institutes > Hamilton Institute
    Item ID: 15185
    Identification Number: 10.1109/ESSCIRC53450.2021.9567867
    Depositing User: Dr Ken Duffy
    Date Deposited: 06 Jan 2022 15:15
    Journal or Publication Title: ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC)
    Publisher: IEEE
    Refereed: Yes
    Related URLs:
    URI: https://mural.maynoothuniversity.ie/id/eprint/15185
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads