Akelbek, Mahmud and Kirkland, Steve (2009) Primitive digraphs with the largest scrambling index. Linear Algebra and its Applications, 430 (4). pp. 1099-1110. ISSN 0024-3795
Download (219kB)
|
Abstract
The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there is a vertex w such that we can get to w from u and v in D by directed walks of length k; it is denoted by k(D). In [M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, preprint], we gave the upper bound on k(D) in terms of the order and the girth of a primitive digraph D. In this paper, we characterize all the primitive digraphs suchthat the scrambling index is equal to the upper bound.
Item Type: | Article |
---|---|
Keywords: | Scrambling index; Primitive digraph; |
Academic Unit: | Faculty of Science and Engineering > Research Institutes > Hamilton Institute |
Item ID: | 2061 |
Depositing User: | Professor Steve Kirkland |
Date Deposited: | 21 Jul 2010 13:53 |
Journal or Publication Title: | Linear Algebra and its Applications |
Publisher: | Elsevier |
Refereed: | Yes |
URI: | |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only(login required)
Item control page |
Downloads
Downloads per month over past year