MURAL - Maynooth University Research Archive Library



    Self-Protection against Gliotoxin—A Component of the Gliotoxin Biosynthetic Cluster, GliT, Completely Protects Aspergillus fumigatus Against Exogenous Gliotoxin


    Schrettl, Markus, Carberry, Stephen, Kavanagh, Kevin, Haas, Hubertus, Jones, Gary W., O'Brien, Jennifer, Nolan, Aine, Stephens, John C., Fenelon, Orla and Doyle, Sean (2010) Self-Protection against Gliotoxin—A Component of the Gliotoxin Biosynthetic Cluster, GliT, Completely Protects Aspergillus fumigatus Against Exogenous Gliotoxin. PLOS Pathogens, 6 (6). ISSN 1553-7366

    [thumbnail of SD_GliT_article_(June_2010).pdf] PDF
    SD_GliT_article_(June_2010).pdf

    Download (1MB)

    Abstract

    Gliotoxin, and other related molecules, are encoded by multi-gene clusters and biosynthesized by fungi using nonribosomal biosynthetic mechanisms. Almost universally described in terms of its toxicity towards mammalian cells, gliotoxin has come to be considered as a component of the virulence arsenal of Aspergillus fumigatus. Here we show that deletion of a single gene, gliT, in the gliotoxin biosynthetic cluster of two A. fumigatus strains, rendered the organism highly sensitive to exogenous gliotoxin and completely disrupted gliotoxin secretion. Addition of glutathione to both A. fumigatus DgliT strains relieved gliotoxin inhibition. Moreover, expression of gliT appears to be independently regulated compared to all other cluster components and is up-regulated by exogenous gliotoxin presence, at both the transcript and protein level. Upon gliotoxin exposure, gliT is also expressed in A. fumigatus DgliZ, which cannot express any other genes in the gliotoxin biosynthetic cluster, indicating that gliT is primarily responsible for protecting this strain against exogenous gliotoxin. GliT exhibits a gliotoxin reductase activity up to 9 mM gliotoxin and appears to prevent irreversible depletion of intracellular glutathione stores by reduction of the oxidized form of gliotoxin. Cross-species resistance to exogenous gliotoxin is acquired by A. nidulans and Saccharomyces cerevisiae, respectively, when transformed with gliT. We hypothesise that the primary role of gliotoxin may be as an antioxidant and that in addition to GliT functionality, gliotoxin secretion may be a component of an auto-protective mechanism, deployed by A. fumigatus to protect itself against this potent biomolecule.
    Item Type: Article
    Additional Information: This work was funded by an Enterprise Ireland grant (PC/2008/046), an EU Marie Curie award (MTKD-CT-2004-014436; Co-ordinator Dr Shirley O’Dea) and the Higher Education Authority Programme for Research in Third Level Institutions (HEA-PRTLI; Cycles 3 and 4). MALDI-ToF, HPLC, LC-ToF and LC-MS facilities were funded by the Health Research Board and the Higher Education Authority. Confocal microscopy facilities were funded by Science Foundation Ireland. JO’B was funded by SFI grant 08/RFP/BMT1439. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Keywords: Gliotoxin—A; Gliotoxin Biosynthetic Cluster; GliT; Aspergillus fumigatus; Exogenous Gliotoxin;
    Academic Unit: Faculty of Science and Engineering > Biology
    Item ID: 2007
    Depositing User: Dr. Sean Doyle
    Date Deposited: 22 Jun 2010 16:05
    Journal or Publication Title: PLOS Pathogens
    Publisher: Public Library of Science
    Refereed: Yes
    Related URLs:
    URI: https://mural.maynoothuniversity.ie/id/eprint/2007
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads